Deployment Pod Count
Check
Kubernetes deployments
Deployment Pod Count
Verifies Kubernetes Deployment pod countsCheck
Kubernetes deployments
Deployment Pod Count
Check
Kubernetes deployments
Deployment Pod Count
Verifies Kubernetes Deployment pod countsCheck
Kubernetes deployments
Kubernetes deployment survives Redis latency
Verify that your application handles an increased latency in a Redis cache properly, allowing for increased processing time while maintaining throughput.
Motivation
Latency issues in Redis can lead to degraded system performance, longer response times, and potentially lost or delayed data. By testing your system's resilience to Redis latency, you can ensure that it can handle increased processing time and maintain its throughput during increased latency. Additionally, you can identify any potential bottlenecks or inefficiencies in your system and take appropriate measures to optimize its performance and reliability.
Structure
We will verify that a load-balanced user-facing endpoint fully works while having all pods ready. As soon as we simulate Redis latency, we expect the system to maintain its throughput and indicate unavailability appropriately. We can introduce delays in Redis operations to simulate latency. The experiment aims to ensure that your system can handle increased processing time and maintain its throughput during increased latency. The performance should return to normal after the latency has ended.
Containers
Datadog monitors
Kubernetes cluster
Kubernetes deployments
Kubernetes deployment survives Redis downtime
Check that your application gracefully handles a Redis cache downtime and continues to deliver its intended functionality. The cache downtime may be caused by an unavailable Redis instance or a complete cluster.
Motivation
Redis downtime can lead to degraded system performance, lost data, and potentially long system recovery times. By testing your system's resilience to Redis downtime, you can ensure that it can handle the outage gracefully and continue to deliver its intended functionality. Additionally, you can identify any potential weaknesses in your system and take appropriate measures to improve its performance and resilience.
Structure
We will verify that a load-balanced user-facing endpoint fully works while having all pods ready. As soon as we simulate Redis downtime, we expect the system to indicate unavailability appropriately and maintain its throughput. We can block the traffic to the Redis instance to simulate downtime. The experiment aims to ensure that your system can gracefully handle the outage and continue delivering its intended functionality. The performance should return to normal after the Redis instance is available again.
Containers
Datadog monitors
Kubernetes cluster
Kubernetes deployments
Graceful degradation when Microsoft SQL Server database can not be reached
An unavailable Microsoft SQL Server database might be too severe for suitable fallbacks and requires your system to indicate unavailability appropriately
Motivation
Depending on your context, an unavailable Microsoft SQL Server database may be considered so severe that there are no suitable fallbacks. In this case, ensuring that your system indicates an appropriate error message is essential. After the Microsoft SQL Server database returns, your system should recover automatically.
Structure
We ensure that a load-balanced user-facing endpoint fully works while having all pods ready. When we simulate an unavailable Microsoft SQL Server database, we expect the user-facing endpoint to indicate unavailability by responding with a "Service unavailable" status. To simulate the unavailability, we can block the Microsoft SQL Server database client connection on its hostname so that no incoming or outgoing traffic goes through. The endpoint should recover automatically once the Microsoft SQL Server database is reachable again.
Containers
Kubernetes cluster
Kubernetes deployments
Graceful degradation when Oracle database can not be reached
An unavailable Oracle database might be too severe for suitable fallbacks and requires your system to indicate unavailability appropriately
Motivation
Depending on your context, an unavailable Oracle database may be considered so severe that there are no suitable fallbacks. In this case, ensuring that your system indicates an appropriate error message is essential. After the Oracle database returns, your system should recover automatically.
Structure
We ensure that a load-balanced user-facing endpoint fully works while having all pods ready. When we simulate an unavailable Oracle database, we expect the user-facing endpoint to indicate unavailability by responding with a "Service unavailable" status. To simulate the unavailability, we can block the Oracle database client connection on its hostname so that no incoming or outgoing traffic goes through. The endpoint should recover automatically once the Oracle database is reachable again.
Containers
Kubernetes cluster
Kubernetes deployments